Emotion Analysis of College Students Using a Fuzzy Support Vector Machine

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Using Support Vector Machine

Speech Emotion Recognition (SER) is a hot research topic in the field of Human Computer Interaction (HCI). In this paper, we recognize three emotional states: happy, sad and neutral. The explored features include: energy, pitch, linear predictive spectrum coding (LPCC), mel-frequency spectrum coefficients (MFCC), and mel-energy spectrum dynamic coefficients (MEDC). A German Corpus (Berlin Datab...

متن کامل

Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...

متن کامل

Named Entity Recognition Using a New Fuzzy Support Vector Machine

Recognizing and extracting exact name entities, like Persons, Locations, Organizations, Dates and Times are very useful to mining information from electronics resources and text. Learning to extract these types of data is called Named Entity Recognition (NER) task. Proper named entity recognition and extraction is important to solve most problems in hot research area such as Question Answering ...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2020

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2020/8931486